CARACTERISTIQUES DE MARS

Mars est une des 8 planètes qui composent le système solaire et l’une des 4 planètes telluriques (ou rocheuses) du Système solaire. Elle est plus froide que la Terre, en effet sa température moyenne est de -63°C. On l'appelle la « planète rouge » car sa surface rocailleuse et désertique est recouverte d'une poussière riche en oxyde de fer de couleur rougeâtre. On y trouve également de nombreux volcans très élevés et de profonds canyons. Mars possède 2 petits satellites naturels connus : Phobos (d’une taille d’environ 22 km et situé à 9 400 km de Mars) et Deimos (environ 13 km et situé à 23 500 km de Mars).

Voici quelques données sur Mars
Diamètre moyen 6 794 km
Masse volumique moyenne 3 933 kg/m3
Gravité à l’équateur (Terre = 1) 0,38 soit 3,71 m/s2
Masse (Terre = 1) 0,11 soit 0,642.1021 t
Distance moyenne du Soleil (Terre-Soleil = 1 UA) 1,52 UA, soit 227,9 millions de km
Période de rotation (cycle diurne) 24,7 h
Inclinaison de l’axe de rotation 25,2°
Période de révolution autour du Soleil 687 jours
Température moyenne à la surface -63°C (min -143°C, max +20°C)

Le nom de Mars :

Mars est nommée d'après l'ancien dieu romain de la guerre, parce qu'elle est rouge comme le sang. Les Romains ont copié les anciens Grecs, qui ont nommé la quatrième planète du soleil d’après leur dieu de la guerre. En Occident Mars est donc surnommée la planète rouge. D'autres civilisations ont aussi donné les noms de planètes en fonction de sa couleur - par exemple, les Égyptiens la nommait "la rouge", tandis que les anciens astronomes chinois la surnommait « l'étoile du feu ».

La question de l'eau :

Comme la Terre, Mars possède des calottes polaires qui changent de taille selon les saisons, elles sont principalement constituées de glace d'eau avec en hiver une fine couche de dioxyde de carbone à l'état solide. Le volume de toute cette glace représente environ 3,2 millions de kilomètres cube, soit plus que la calotte du Groenland. Cela fait une grande quantité d'eau.

L'eau, que l'on sait désormais très présente à la surface de Mars mais pas sous forme liquide, est longtemps restée une question d'intérêt majeure. Avant les preuves concrètes apportées depuis l'espace (image des nuages de vapeur d'eau dans la haute atmosphère martienne, sondages radar des calottes polaires par l'orbiteur européen Mars Express), puis depuis le sol (glace d'eau pelletée par l'atterrisseur américain Phoenix, minéraux signatures d'interaction entre eau liquide et roches, déjà repérés depuis l'espace et redécouverts par les rovers américains Spirit et Opportunity, enfin galets et argile d'eau douce découverts par le rover Curiosity), de nombreuses hypothèses avaient été émises sur la présence d'eau liquide sur Mars.

Des clichés du sol où l'on y voit des traces de ce qui pourrait être d'anciennes rivières (datant de plusieurs milliards d'années) ou des coulées d'eau transitoires (peut-être plus récentes, quelques millions d'années ou moins), ont poussé les scientifiques de la fin du xxe siècle sur la piste de l'eau liquide sur Mars. Actuellement, cette eau liquide ne peut pas de maintenir à la surface de cette planète, du fait de la trop faible pression atmosphérique ; elle ne peut y exister que sous forme de glace d'eau, solide, ou sous forme de vapeur d'eau, gazeuse.

Les traces maintenant indiscutables de présence d'eau liquide signifient aussi qu'à cette époque, l'atmosphère martienne était beaucoup plus dense. L'hypothèse la plus argumentée est celle de l'échappement d'une bonne partie de cette atmosphère dans l'espace interplanétaire. Mars, petite planète par rapport à la nôtre, s'est refroidie plus vite. Une conséquence en a été la perte de son champ magnétique d'origine interne, lequel sur Terre joue un rôle important de protection par la création de la magnétosphère, véritable bouclier protégeant notre atmosphère de son érosion par le vent solaire. La jeune Mars, pendant environ un milliard d'années, environ le quart de son existence jusqu'à maintenant, a très vraisemblablement possédé un champ magnétique protecteur, une atmosphère plus dense, et de l'eau liquide à sa surface.

Du fait de sa petite taille, la température interne de Mars a baissé plus rapidement. Après ce premier milliard d'années pendant lequel Terre et Mars devaient se ressembler beaucoup plus qu'actuellement, le noyau métallique n'a plus pu engendrer ce champ magnétique interne. Le bouclier magnétosphérique a alors disparu, et l'atmosphère martienne s'est progressivement faite emporter par le vent solaire, jusqu'à ce qu'elle ne puisse plus permettre à l'eau d'exister sous forme liquide.

Des traces d'écoulements actifs sur des pentes ont été découvertes relativement par hasard en 2006 par les satellites en orbite reprenant en photo de mêmes terrains1. L'étude reprise plus systématiquement ensuite a permis de découvrir en 2011 des écoulements saisonniers déclenchés par un ensoleillement accru lors de l'été local. Ils apparaissent sur les pentes internes de nombreux cratères aux latitudes moyennes à basses, et sont typiquement actifs depuis le début de l'été local et en gros pendant l'équivalent d'un trimestre ; vers ce terme, les traces d'écoulement se figent puis disparaissent progressivement. Diverses hypothèses ont été émises, comme par exemple des sables extrêmement fins agrégés par un film d'eau ou de gaz carbonique solidifié, et dont la volatilisation permettait la mise en mouvement gravitaire du matériau résiduel "sec", un peu de la façon des avalanches de sable qui ont été photographiées glissant depuis des crêtes de dune lors de la resublimation du givre de gaz carbonique déposé au petit matin des printemps locaux2. L'hypothèse qui très rapidement s'est révélée la plus probable est celle d'une saumure, mélange de sels minéraux rendu relativement fluide par la présence d'une fraction très ténue d'eau. Toutefois, rien à voir avec de l'eau liquide comme on l'entend usuellement, même très salée ; un équivalent terrestre serait plutôt une salière ouverte oubliée en période humide dans un placard : quelques pour cents d'eau atmosphérique peuvent s'y faire piéger, peut-être même jusqu'à 5%, grand maxi 10%, selon la nature chimique des sels (hygroscopiques = qui "aspirent" l'eau vapeur de l'atmosphère, et la retiennent fortement), mais permettant néanmoins le lent déplacement de films aqueux très salins, même à des températures très basses, inférieures à -20 °C. Techniquement, ces molécules d'eau ne sont ni à l'état de solide (glace), ni de gaz (vapeur d'eau), mais leur concentration est trop faible pour parler d'eau liquide, et ces molécules sont totalement liées aux ions des sels, ce que l'on appelle en chimie une saumure. L'eau piégée dans la saumure met plusieurs dizaines de jours à s'évaporer dans l'atmosphère martienne, bien plus lentement que ne le ferait une eau "libre", notre classique eau liquide. Par ailleurs, un tel milieu n'est pas considéré comme pouvant abriter de la vie.

modélisation
structure interne de Mars
modélisation
Atmosphère de Mars
modélisation
Animation montrant la compostion et le déplacement des planètes du système solaire